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The acoustical properties of a' gas-solids suspension are investigated.
A combined (mechanical, thermodynamic) approach to the study of
the propagation of small perturbations in mixtures is adopted.

The theory of sound absorption in disperse systems,
due to S. M. Rytov, V. V. Vladimirskii, and M. D.
Galanin [1], assumes that the medium is barotropic.

In [2] P. P. Zolotarev introduced temperature ef-
fects and, taking into consideration the compressibil-
ity of the suspended component, obtained very clumsy
formulas for the dispersion of the speed and absorp-
tion of sound at low frequencies.

The present paper analyzes the effects accompany-
ing the propagation of acoustical disturbances in a
monodisperse gas-particlesystem. Simplified relations
for the speed of sound and the attenuation constant are
then derived.

§1. When small low-frequency perturbations are
generated in a gas-solids suspension, the disturbed
mixture will be essentially in equilibrium. In the lim-
iting case of small frequencies the suspended particles
can follow the acoustic wave with respect to both dis-
placement and temperature variation. "™acroscopically,"
the propagation process will be adiabatic, but at small
frequencies the temperature differences between the
particles and the gas will be able to adjust themselves,
and "microscopically" the process will be isothermal
[3]. Knowing the mechanical and thermodynamic con-
stants of the components, one can easily calculate the
values of the compressibility and the speed of sound in
the mixture corresponding to this case.

For the adiabatic compressibility we have the fol-
lowing relation [4]:
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Hencé, by virtue of the additivity of the quantities ay,
B, and pc,, the adiabatic-isothermal value of the com-
pressibility can be represented in the form*

*We note that in [3] some of the definitions are in-
accurate. The correct formula for the adiabatic-iso-
thermal compressibility of the emulsion (p. 908) has
the form
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The quantity ¥, may be called the equilibrium adiabatic
exponent.
From (2) we obtain an expression for the equilib-
rium speed of sound: :
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As the frequency of the perturbations increases, the
particles are less and less able to follow the resulting
motions and temperature changes of the gas. In the
high-frequency limit the gas temperature fluctuations
take place so rapidly that any heat transfer between the
components is excluded. The compressions and expan-
sions in the mixture will be adiabatic even on the "mi-
croscopic” level. However, the effective density of the
mixture approaches the density of the gas. Its value
was found in [2] and is represented by the following
relation:

LI
Po Pm Po

Now, the adiabatic-adiabatic compressibility of the

mixture is determined from (1) in the form
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and for the phase velocity of propagation of the acoustic
wave we have
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The quantity ce is usually called the "frozen" speed of
sound. In both limiting cases the speed of sound and
hence the wave number k = w/c are real, i.e., there
are no absorptions and phase shifts.
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In the intermediate frequency region friction, which
tends to equalize the particle and gas velocities, and
the periodic irreversible heat transfer from the gas to
the particles and back lead to significant energy dissi~
pation. As a result of the relative slowness of the en-
trainment of the particles by the gas and the equaliza-
tion of their temperatures dispersion of the sound
occurs comparatively early.

§2. We will examine the behavior of the dispersion
curve between the asymptotic values obtained for the
velocity.

Assuming that viscosity and thermal conductivity
effects are important only in the gas~particle interac~
tion processes, we can write the system of acoustical
equations of conservation of mass, momentum, and
energy in the following form [2, 1]:
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In Eq. (9) we have taken the Stokes value of the parti-
cle drag coefficient, which is valid only for waves that
do not exhibit very high frequency. However, in the
case of a Stokes approximation of the law of particle
entrainment the Nusselt number can be taken equal to
two. Then for the heat transfer coefficient in heat
transfer equation (11) we have o = A/r.

To close system (6)—(11) we add the acoustical
equation of state for the gas:
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We will find the solution of system (6)—(12) in the
form of a harmonic plane wave, writing all the depen-
dent variables in the form

f=f*exp [——i(mt—kx)]. (13)

As a result we obtain the following dispersion relation:
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For most gases and metal particles the term
1/3( ey /M) is equal to 2/9, and hence the time char-
acteristics of thermal and dynamic particle relaxation
are effectively equal.

Asf;, — 0 and § — 0, By and By tend to unity and
(14) gives the expression for the equilibrium velocity
of sound (3).

Exactly as in [1, 2], it can be shown that our final
formulas (14)—(17) are valid up to wry = 1 and wry = 1.
However, it is easy to arrive at the conclusion that the
latter relations should also give the correct limiting
value of the phase speed of sound as £ p and & —
— o (or WTy T ©, WTy T ).

In the limit from (14) we obtain the frozen speed of
sound (5).

The frequency at which the period of the generated
wave is equal to the particle relaxation time is the
critical frequency. Transition through this frequency
corresponds to transition from the equilibrium to the
frozen speed of sound.

In the case of low dispersion, from (14)forthe com-
plex wave number we have approximately
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Keeping the real and imaginary parts separate, we
obtain the law of dispersion of velocity and the attenu-~
ation constant:
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For sufficiently rarefied systems, when it is pos-
sible to neglect not only the volume but also the mass
particle concentration as compared with unity, (20)
reduces to the form
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And, finally, in the case §; <1 we have the following
relation for the relative sound attenuation:
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The results of the theory are in satisfactory agree-
ment with the experimental data of [5].

NOTATION

a = A/pcp is the thermal diffusivity of the gas; ¢ is
the speed of sound in the gas; ¢q is the equilibrium
speed of sound; C« is the frozen speed of sound; cp, is
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the specific heat of the particle material; ¢y and ¢

are the specific heats of the gas at constant volume
and pressure; f* is the amplitude; k is the wave num-
ber; p is the sound pressure; r is the particle radius;
t is the time; T is the perturbation of gas temperature;
u is the gas velocity; V is the particle volume; w is the
particle velocity; « is the heat transfer coefficient; oy
is the coefficient of volume expansion of the gas; 8 is
the isothermal gas compressibility; v = cp/cv is the
ratio of specific heats; yqgr is the effective adiabatic
exponent; 0 = pm/pg is the density ratio; ¢ is the per-
turbation of particle volume concentration; @ is the
deviation of particle temperature from its value in the
undisturbed state; A is the thermal conductivity; g, v
denote the dynamic and kinematic viscosities of gas;

p is the deviation of gas density from its value in the
undisturbed medium; py, is the density of the particle
material; B = €0Pm + (1 = €9)py; Ty = 1/3(cyy Pmr?/A)
and = 2/9(pyT /V) are the thermal and dynamlc
particle relaxation times; &) = wr?/2q and £, = wr¥2v
are parameters; w is the cyclic frequency; By = @&/T;
Bﬂ = w/u is the velocity ratio; Nu = 2ar/A is the Nus-
selt number; Pr = v/a is the Prandtl number; (7) is the
mean over the volume of the mixture; ( ) is the un-
disturbed value; low-frequency value; ( ) is the high-
frequency value.
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